





LE COLLÈGE CANADIEN DES PHYSICIENS EN MÉDECINE

CANADIAN MEDICAL PHYSICS NEWSLETTER

LE BULLETIN CANADIEN de PHYSIQUE MÉDICALE

# InterACT/O/\S

62(2) April/avril 2016

MARTIN YAFFE AND ERVIN PODGORSAK INVESTED INTO THE ORDER OF CANADA

> Publications Mail Agreement No. 40049361

Return Undeliverable Canadian Addresses to: COMP/CCPM Office 300 March Road, Suite 202 Kanata, ON K2K 2E2 Canada



# Track-it

# Management Solution by PTW Tracking. Trending. Reporting.

The New QA Data

The first of the f

On one single platform.

Anytime. Anywhere. Your way.













62(2) April/avril 2016

A publication of the Canadian Organization of Medical Physicists and the Canadian College of Physicists in Medicine

www.comp-ocpm.ca ISSN 1488-6839

#### **COVER IMAGE**

Photo provided by Ervin Podgorsak

# TABLE OF CONTENTS

- 5 MESSAGE FROM THE COMP PRESIDENT DR. MARCO CARLONE
- 6 MESSAGE FROM THE CCPM PRESIDENT DR. CLÉMENT ARSENAULT
- 7 EXECUTIVE DIRECTOR REPORT NANCY BARRETT
- 8 MESSAGE FROM THE EDITOR CHRIS THOMAS
- 9 IMAGING MEETING AT WINTER SCHOOL
- MANITOBA'S NEW RADIATION PROTECTION ACTDANIEL W. RICKEY AND INGVAR FIFE
- 12 CNSC FORUM ALEX COLLIGAN
- 13 NEW COMP MEMBERS
- 14 CURRENT CORPORATE MEMBERS
- 18 CALL FOR BOARD NOMINATIONS
- 20 DATES TO REMEMBER
- 21 STUDENT COUNCIL ELECTION
- 22 ARE PHYSICS ASSISTANTS A BAD IDEA? SILVIA NEUTEBOOM
- 24 ERVIN PODGORSAK AND MARTIN YAFFE INVESTED INTO THE ORDER OF CANADA
- 26 NOTES FROM THE 7TH CANADIAN WINTER
  SCHOOL ON QUALITY AND SAFETY IN RADIATION
  ONCOLOGY MICHAEL LAMEY

#### COMP BOARD

#### President:

Marco Carlone PhD, MCCPM Princess Margaret Hospital Toronto, ON Tel: (416) 946-4501 ext: 2409 marco.carlone@rmp.uhn.on.ca

#### **Past President:**

Luc Beaulieu, PhD CHUQ—Hôtel-Dieu de Québec Québec, QC Tel: (418) 525 4444 ext 15315 beaulieu@phy.ulaval.ca

#### **Vice President:**

Michelle Hilts, PhD, MCCPM BC Cancer Agency – Southern Interior Kelowna, BC Tel: (250) -712-3966 ext 686738 mhilts@bccancer.bc.ca

#### **Secretary:**

Emilie Soisson, MCCPM McGill University Health Centre Montreal, QC Tel: (514) 934-1934 ext. 44152 esoisson@mephys.mcgill.ca

#### Treasurer:

Crystal Angers, MSc, FCCPM The Ottawa Hospital Cancer Centre Ottawa, ON Tel: (613) 737-7700 ext 70030 cangers@ottawahospital.on.ca

#### Directors:

Craig Beckett, MSc, FCCPM, dABR Allan Blair Cancer Centre Regina, SK Tel: (306) 766-2682 craig.beckett@saskcancer.ca

Stephen Breen, PhD, MCCPM Princess Margaret Hospital Toronto, ON Tel: (416) 946-4501 ext 5421 stephen.breen@rmp.uhn.on.ca

Kyle Malkoske, MSc, FCCPM Royal Victoria Hospital Barrie, ON Tel: (705) 728-9090 ext. 43307 malkoskek@rvh.on.ca

Daniel Rickey, PhD, MCCPM CancerCare Manitoba Winnipeg, MB Tel: (204) 787-1764 daniel.rickey@cancercare.mb.ca

Atiyah Yahya, Ph.D., MCCPM Cross Cancer Institute Edmonton, AB Tel: (780) 989-4335 ayahya@ualberta.ca

#### CCPM BOARD

#### **President:**

Clément Arsenault, PhD, FCCPM, FCOMP

#### **Vice-President:**

Cheryl Duzenli, PhD, FCCPM

#### Registrar:

Raxa Sankreacha, MSc, FCCPM, DABR registrar@ccpm.ca

#### **Chief Examiner:**

Renée Larouche, MSc, FCCPM chiefexaminer@ccpm.ca

#### **Deputy Chief Examiner:**

Alasdair Syme, PhD, FCCPM deputyexaminer@ccpm.ca

#### Secretary-Treasurer:

Wendy Smith, PhD, FCCPM

#### **General Board Members:**

Glenn Wells, PhD, FCCPM Horacio Patrocinio, MSc, FCCPM, FCOMP

#### COMP/CCPM Office

300 March Road, Suite 202 Ottawa, ON, K2K 2E2 Canada Telephone:(613) 599-3491 Facsimile: (613) 595-1155 E-mail: Gisele.kite@comp-ocpm.ca Website: www.comp-ocpm.ca The Canadian Medical Physics
Newsletter, which is a publication
of the Canadian Organization of
Medical Physicists (COMP) and the
Canadian College of Physicists in
Medicine (CCPM) is published four
times per year on 1 Jan., 1 April,
1 July, and 1 Oct. The deadline for
submissions is one month before
the publication date. Enquiries,
story ideas, images, and article
submissions can be made to:

Christopher Thomas, Ph.D., MCCPM Nova Scotia Cancer Centre Medical Physics Dept. 5820 University Avenue Halifax, NS B3H 1V7 Email: chris.thomas@nshealth.ca Phone: (902) 473-1302

Members of the Editorial Board include:

Idris Elbakri Luc Beaulieu Parminder Basran

Please submit stories MS Word or ASCII text format. Images in Tiff format at 300 dpi resolution are preferred.

All contents of the Newsletter are copyright of Canadian Organization of Medical Physicists and the Canadian College of Physicists in Medicine.

Please do not reproduce without permission.

# ADVERTISING (both corporate and job)

Enquiries can be made to:

COMP/CCPM Office 300 March Road, Suite 202 Ottawa, ON, K2K 2E2 Canada Telephone:(613) 599-3491 Facsimile: (613) 595-1155 E-mail: Gisele.kite@comp-ocpm.ca Website: www.comp-ocpm.ca

# MESSAGE FROM THE COMP PRESIDENT

In these messages to you that I have written over the past year-and-a-half, I have tried to emphasise that, as medical physicists, the work that we do is valued very highly by our colleagues, by the public, and ultimately by patients. I believe the reason for this is really very simple: everyone who is interested in healthcare knows that the better use of technology within the medical setting is critically important. If you think about medical progress, it is impossible to visualise this without also thinking about better technologies used to diagnose and treat diseases. As a medical physicist, I am convinced that we are the keyholders to unlocking technological advances within the healthcare problem because of our unique ability to understand technology and implement it in a clinically helpful way.

In my last message to you, I wrote about some leadership challenges that I see occurring within our profession and in regards to the better use of technology within the healthcare setting generally. I tried to make the argument that medical physicists can and should take on more leadership positions within the healthcare setting if we wish to be more effective at what we do. In continuing this message, I would like to focus on what I see are some of the challenges in improving our leadership effectiveness.

When I came into the medical physics profession and learned about the way a Canadian career progressed, one of the things that stood out the most was the business of the MCCPM and FCCPM certification process. As I understood it at that time, the FCCPM designation was meant to represent some type of seniority

within the profession, however, it wasn't clear to me what that seniority actually meant. In many jurisdictions, this designation was used to qualify for the designation of "Senior Physicist." I also heard through discussions with colleagues that the FCCPM was meant to represent readiness for a head of department position, and more leadership within the profession generally.

Even now, I am not sure if my initial impression was accurate at the time or what the general feeling about the meaning of the FCCPM is today. I would submit, however, that within our community, the FCCPM is meant to indicate some type of seniority or leadership ability. In relation to leadership, I would like to suggest two things:

- 1. Leadership is of importance to the entire medical physics community, which includes students, residents, clinical physicists, and non-clinical physicists. Therefore, advocating for leadership and enabling activities helpful for leadership is more a professional development activity rather than a distinction that is designated by a certifying body.
- **2.** In itself, the FCCPM designation is neither the sole nor the best indicator of excellence and leadership in medical physics. It may have been in the past, but today I suggest that it is not. Other than for career progression in some regions, the role of the FCCPM designation within our profession is unclear. As a consequence, there may be confusion about what constitutes leadership training for medical physicists, and how medical physicists should best demonstrate to our medical colleagues our leadership abilities.



Dr. Marco Carlone

I recognise that some people in our community may not agree with these statements. I also recognize that the subject of the FCCPM is complicated, since in some areas of the country career progression is linked to the FCCPM.

As you may know, our American colleagues at the AAPM are also emphasising the importance and development of leaders (the AAPM summer school this year is focussed on leadership). As well, at our strategic planning retreat that was held in February this year, the COMP Board identified leadership as a strategic bucket. So I suggest that this is a very good time for the Canadian community to have a meaningful discussion about leadership. I suggest that this discussion should be focussed on improving the effectiveness of the medical physicist within the healthcare environment. How do we use the scientific, critical thinking and analytical skills that medical physicists are taught, to develop effective leaders for the entire healthcare community? Are we effectively advocating for

Continued on page 20

# MESSAGE FROM THE CCPM PRESIDENT

When you receive this newsletter, our 2016 MCCPM written exam will have taken place. In all, over 40 candidates were eligible to write the exams in the various sub-specialties. Another large group of examinees! I would like to thank our Chief Examiner, Renée Larouche, our Deputy Chief Examiner, Alasdair Syme, and all of the examiners and invigilators who assisted in this year's process. The College's work cannot happen without your participation.

This year was the first year where candidates for the Radiation Oncology Physics exam were required to have completed a CAMPEP-accredited residency or graduate program to be eligible to write the exam. The CCPM was a sponsoring organization of CAMPEP from 2001 to 2010, and was then replaced by COMP. The requirements in Regulation D.2.7 were introduced to recognize the importance of CAMPEP Accreditation in the training of medical physicists in Canada. This requirement was announced in 2009 with an enforcement year of 2016, which provided seven years for candidates and programs to make the necessary changes to meet this requirement. Similarly, the ABR in the United States introduced CAMPEP requirements for their 2014 exams.

In January, our contracts with AMCES and COMP were renewed for three years. The contract with AMCES identifies the services provided, both exam related and non-exam related. For the non-exam related services, the COMP provides financial assistance to the College. This financial assistance is the focus of the CCPM-COMP contract. We look forward to our continued collaboration and work with both AMCES and COMP.

Also in January, the College received notice from CMA Accreditation Services that it will be divesting itself of its responsibility

for assessing and accrediting health education programs. CMA Accreditation Services currently accredits education programs of what is referred to as allied health professions. These include professions such as radiation therapist, imaging technologists, laboratory technologists, etc. The CCPM has been an official sponsor of conjoint accreditation services. Several CCPM members have participated as surveyors on program visits. The College will have to review its role as the allied health professions reorganize their program accreditation services.

If you read the message from the President of COMP, Marco Carlone, (if you haven't, you should!) you will see that leadership and the Fellowship Distinction are the focus of his message. As you know, the College grants an honourable distinction of Fellow to individuals who have demonstrated excellence and leadership in the practice of medical physics. During the rewriting of our bylaws and regulations to take into account the Federal Not-For-Profit Act, the Board opted to maintain the Fellowship as a distinction. The Board, at the time, had to do a significant amount of work, in a short period of time, to revamp our bylaws and regulations without opening up the debate about the Fellowship. However, the time may be right for a healthy debate on the Fellowship and its role in our profession.

During the COMP strategic planning that took place in Montebello prior to the COMP Winter School, one exercise struck me: the "blank sheet of paper" exercise. The approach is quite simple. If your organization didn't exist, how would you design it on a blank sheet of paper? Why does it exist? What is critical? How do your processes have to work? This is a very valuable exercise for any company, organization, or group.



Dr. Clément Arsenault

Within this exercise, it would be quite difficult to justify creating the Fellowship if the "raison d'être" of the College is certifying clinical competency in medical physics. In 2002, the Board of the College attempted to abolish the Fellowship. The motion was defeated. In 2008-09, another review took place. The Board at the time chose not to take action since demand for the Fellowship was increasing. Clearly, the membership at the time saw value in the Fellowship and felt it should be maintained. Furthermore, during our recent survey on the Fellowship, the majority of the respondents were in favor of the College continuing to provide the Fellowship. Based on this, the Board decided to continue its current approach relating to the Fellowship. This said, a discussion on the subject is always welcome. I would encourage all CCPM and COMP members to discuss locally or publically their thoughts on the Fellowship. Does it still have a place in our profession? Is it still needed as an indicator of excellence? A healthy debate on this is worthwhile and will help the Board define what future steps to take.

# **EXECUTIVE DIRECTOR REPORT**

As I write this article, Ottawa is just recovering from another major snow storm – hard to believe we are thinking about the spring issue of InterACTIONS!

It was a busy, but most rewarding, winter for COMP. We had a successful 7th Winter School at the beautiful and historic Fairmont Chateau Montebello. Each year, new and innovative programming is added to the Winter School program and this year did not disappoint. The keynote speaker, Margaret Murphy from Ireland, whose son died because of a medical error, inspired the group with her story and provided insight and wisdom that set the tone for the week. On Wednesday, several patients participated in the program and shared their experiences. We expanded our use of technology at the Winter School this year by introducing a mobile app. As well, we recorded all of the plenary sessions and those will be made available via our website. Congratulations to Winter School Chair, John Kildea for his leadership and to the planning committee for its dedication and commitment to creating and delivering an excellent program.

In conjunction with the Winter School, the COMP Board participated in a strategic planning session that was facilitated by consultant Meredith Low. In preparation for the session, Meredith conducted some up front research and interviewed Board members, medical physicists who are not actively engaged in COMP, industry partners, and other stakeholder groups. It was a productive session in which priorities for the next three years were considered. As a follow-up to this session, we have set up a taskforce to finalize the priorities

and to develop an implementation plan for the Board's consideration and approval at its July meeting. The Board was very engaged in the process and looks forward to moving forward with the plan. Once it is finalized, the strategic plan will be shared with the membership.

Through Meredith's research, we learned that COMP has a positive reputation in the community for being a collaborative and innovative organization with the ability to bring groups together for a common purpose. The Winter School is an example of our success in this area. We are also exploring the creation of another educational program focused on quality and safety that would be geared toward the various professions in medical imaging. We invited representatives of the Canadian Association of Radiologists (CAR), the Canadian Association of Medical Radiation Technologists (CAMRT), and the Canadian Association of Nuclear Medicine (CANM) to join us in Montebello to participate in the Winter School and to explore how we could move forward with a similar initiative for the imaging professions. I am happy to report that there is strong support from the other organizations, and we are in the process of getting the ball rolling. Stay tuned for more information!

Of course one of our most important strategic partners is the CCPM, and I am happy to report that, also at Montebello, a three year contract was signed between COMP and CCPM. The contract outlines the relationship and the financial arrangement between the two organizations.

In summary, it was a very productive time at Montebello!



Ms Nancy Barrett

We are now into full-blown planning mode for the Annual Scientific Meeting that will be taking place from July 20th to the 23rd in St. John's, Newfoundland. I am sure you agree with me that Newfoundland and Labrador Tourism have the best promotional advertisements on the planet and every time I see one, I am more excited for the ASM. It is once again a privilege to work with such a dedicated and talented planning team under the leadership of BeiBei Zhang. As with all of our programs, the planning committee is working hard to keep it fresh. In addition to the scientific and continuing education sessions, this year we will be hosting a workshop targeted to young professionals. The workshop will provide residents, graduate students, and early-career medical physicists with education on professional and jobreadiness skills. This is intended to complement academic and research training and prepare the participants for successful careers in clinical, research, industry, government, and academic fields. A keynote speaker, a panel of

Continued on page 30

# MESSAGE FROM THE EDITOR

Hello all! Winter has come and gone, and with it, another successful Winter School. It looks like it was amazing and very educational.

We've got a great issue for you, packed with all kinds of good stuff. I don't have much to say myself, but just a few things to mention.

The Inter-Professional Radiation Treatment Quality and Safety Summit (ad in this issue) is collaboration by CPQR, and CAMRT. This is being held at the annual Atlantic Province's ARF meeting, which is always an excellent venue for meeting with RTT, RO, dosimetry, and medical physics colleagues to discuss clinical issues and how to advance and improve clinical care. I've gone to two of these ARF meetings in the past and they are always

involve lively discussion and are super informative.

By the time you read this, if you are the head of a graduate program, you'll have received an email from me asking you to email a list of your department's medical physics graduates for the year 2015. Please send their names and their theses titles to me by June 1st for inclusion in the July issue of InterACTIONS. Thank you!

Also, next issue, we'll have a new feature article. Over the next year, we'll be publishing articles (four total) on legal and ethics issues around our field. Should be very interesting, I think.

Just as a reminder, YOU help make InterACTIONS work, so please submit articles. Take care and see you soon.



Dr. Chris Thomas





CPQR
Canadian Partnership for
Quality Radiotherapy
PCQR
Partenariat canadien pour
la qualité en radiothérapie

Join CPQR, CAMRT and the Atlantic Radiotherapy Forum (ARF) at the

# Inter-Professional Radiation Treatment Quality and Safety Summit

June 9, 2016 Prince George Hotel, Halifax NS

Visit Annual General Conference – Related Events on the CAMRT website for more information www.camrt.ca









# IMAGING MEETING AT WINTER SCHOOL

COMP Board members Marco Carlone, Michelle Hilts, Stephen Breen, and Nancy Barrett met recently with representatives from the Canadian Association of Radiologists (CAR), The Canadian Association of Medical Radiation Technologists (CAMRT), and the Canadian Association of Nuclear Medicine (CANM) during the Winter School to discuss how the organizations can work more closely together to promote safety in medical imaging.



**Standing:** COMP President Marco Carlone, COMP Vice-President Michelle Hilts, COMP Science and Education Committee Chair Stephen Breen, CAMRT CEO François Couillard, CAR Board President Dr. William Miller.

**Seated:** CANM Executive Director Hélène Samson, CAR Director of Quality Assurance Andrea Nelson, CAMRT Manager of Conferences and Events Gertrud Jeewanjee, COMP Executive Director Nancy Barrett.

# MANITOBA'S NEW RADIATION PROTECTION ACT

#### **Daniel W Rickey and Ingvar Fife**

CancerCare Manitoba

On June 9th, 2015, the Minster of Health for Manitoba introduced Bill 37, The Radiation Protection Act, in the Legislative Assembly of Manitoba. Although this first reading lasted only three minutes, several years of work preceded it. To draft this legislation we had the honour of being on a team of six people, including the Executive Director of the Legislative Unit for Manitoba Health, Healthy Living and Seniors, two crown counsel from Manitoba Justice, and the Director of Provincial Diagnostic Services. In addition, a number of stakeholders were consulted and their input proved invaluable. Although extremely rewarding, the process was more challenging and took much longer than either of us anticipated. However, thanks to the very hard work of the team, the result is a very well written

Upon proclamation, this Act will replace the existing X-ray Safety Regulations, which are based on the out-of-date ICRP 26 and have become frail and deficient. Revising the legislation was initiated when one of us (IF) gave a presentation to a deputy minister. Thereafter we encountered a process that was impressively comprehensive and involved many hours of discussions and consultations. There were many intense proof-reading sessions where every word and comma had to be carefully considered. Throughout we were extremely grateful to our team members for their unrelenting attention to detail.

The Act will provide contemporary and robust regulation of ionizing radiation equipment. In general, it follows the recommendations of ICRP 60 and ICRP 103 but provides flexibility by allowing for successor documents to be adopted by regulation. Additionally, the Act will harmonize with federal and provincial legislation across Canada and also fill gaps in legislation, for example, by regulating aspects of nuclear medicine and multimodality equipment. Careful consideration has been given to a number of more specific requirements. The roles and responsibilities for the x-ray inspectors and their director are clearly defined. Powers provided to the inspectors regarding order-making and inspection are similar to the authority of other provincial inspectors, such as those for the construction and food industries. It is also important to note that we anticipate minimal impact on costs in providing these authorities to the inspectors.

Occupational protection is well established in all sectors and the Act will maintain radiation protection for workers and the general public. In contrast, radiation protection for patients is a relatively new concept and wording is included to reinforce

the principles of optimization, justification, and dose limitation. For example, clinicians must use appropriate and maintained equipment. There is also a provision requiring the reporting of an overexposure. However, the Act will not interfere with the regulation of clinical practice by the College of Physicians and Surgeons of Manitoba (CPSM) or the accountability of regulated health professionals to other professional bodies, e.g. the Canadian Association of Radiologists (CAR).

One purpose of the Act is to, "regulate the installation, operation and maintenance of equipment that emits or detects ionizing radiation". It has provisions for the entire imaging system, i.e., the x-ray tube and the detector. This requirement also applies to nuclear medicine cameras. The reasoning is that a poorly operating detector could lead to an increased or needless exposure. Consequently, the entire system must be properly maintained and if it is used for medical purposes, there must be a quality assurance program. Although quality assurance applies to nuclear medicine detectors, radioactive sources are excluded from the Act.

Second reading is where the Act was debated in the Legislature and this took place on October 26, 2015. The amount of discussion, about 35 minutes, was more than we (IF & DR) had anticipated. The Minister gave a detailed speech on the need for the new act. The opposition responded with a couple of pointed questions on the age of the computed tomography scanners in the province and their radiation doses. Opposition members also spoke on various aspect of radiation safety and were broadly in support of Bill 37. The entire discussion makes for interesting reading and is easily accessed online through Hansard on the Legislative Assembly website. The questions posed by the opposition required answers and this was a busy time for us as we needed to supply appropriate information to provide an informed response.

After second reading, Bill 37 was referred to committee. This is where citizens or groups could make public presentations at the Legislature relating to the Bill. Committee took place during the evening of Wednesday, October 28, 2015. There were eleven members on the committee including the Minister of Health and members of opposition parties. One of us (DR) was present to provide support to the Minister in case there were questions regarding the Bill. The bill preceding Bill 37 had several presenters with some lively discussion. Given that virtually any question or comment could be brought forth,

DR was appropriately nervous. We were very pleased that Bill 37 passed Committee after only a modest discussion among the committee members.

We are delighted that Bill 37 received Royal Assent on November 5, 2015. During this process COMP did not remain silent, but sent a letter in support of the Act to the Minister of Health. A response was received from the Minister and is attached. The Act will come into force upon proclamation pending the development of the regulations required to implement it. We (IF & DR) are currently participating in the development of these regulations and hope that they will be finalized this year.



#### MINISTER OF HEALTH

Room 302 Legislative Building Winnipeg, Manitoba, CANADA R3C 0V8

DEC 18 2015

Dr. Marco Carlone, MCCPM President Canadian Organization of Medical Physicists Suite 202 – 300 March Road Ottawa ON K2K 2E2

Dear Dr. Carlone:

I am writing to thank you for your letter expressing the support of the Canadian Organization of Medical Physicists for Bill 37, *The Radiation Protection Act* (Act). I am pleased to advise you that the Bill has received Royal Assent. It will be proclaimed into force when the regulations required to implement the Act have been developed.

I would also like to take this opportunity to note that in the development of this legislation, we were very fortunate to have the expert advice and support of two Manitoba medical physicists, Dr. Ingvar Fife and Dr. Daniel Rickey. We hope that they will continue to work with Manitoba Health, Healthy Living and Seniors (MHHLS) staff and relevant stakeholders in the development of the required regulations and in the implementation of the new Act.

Sincerely,

Sharon Blady

c Ms. Donna Hill, Executive Director, Legislative Unit, MHHLS

### **CNSC FORUM:**

#### QUICK-REFERENCE SPREADSHEETS AND OTHER UNOFFICIAL RECORDS

#### **Alex Colligan**

Project Officer, Accelerators and Class II Facilities Division, CNSC

I was recently performing a Class II Compliance audit at a medical facility, which included inspecting the sealed source storage room. Like many source storage rooms, a hand-filled inventory record of all the radioactive sources could be found posted on the wall inside the room, correctly dated and signed by the last person who had done a periodic inventory count.

Later in the day, the RSO showed me an electronic version (an excel spreadsheet) of the inventory he kept on his computer. It was mostly just a transcription from the original record, containing source numbers and isotope types along with their respective activity. "I keep the inventory on a spreadsheet in my computer, to avoid having to walk to the inventory room every time I want to check something," the RSO said. A discussion with other members of the radiation safety office revealed such a practice was quite common. Many employees, assistant radiation safety officers or physicists, kept their own electronic version of the inventory on their computers, as a means to save time.

Inevitably, as an inspector, this raises many questions of quality control. Who physically checks the inventory in the sealed source room? Who fills the annual compliance report (ACR)? As it turns out, these tasks were completed by two different individuals. As one might suspect, a comparison of the different unofficial electronic inventories revealed inconsistencies between them. I subsequently discovered some of these errors had slipped into the annual compliance reports, and that the licensee had been incorrectly reporting their source inventory for the last four years. Moreover, a source had been transferred from one room to another during renovations, and this had been incorrectly recorded on several spreadsheets leading to confusion as to where the source was actually located. All this, despite regular inventory checks.

It quickly becomes apparent that a small, seemingly innocent practice of creating unofficial inventory records can create a complex procedural weakness, even within a facility with an otherwise robust

radiation protection program. In some cases, the RSO himself may not even be aware of the practice, further complicating the situation.

While the CNSC regularly verifies that a licensee keeps and maintains prescribed records, it seldom checks whether different employees are using secondary versions. It should also be noted that the CNSC does not expressly forbid the use of secondary records. For example, it is quite common for a handwritten fault log to be kept at each linac console, which the contents are subsequently transcribed into a database for the electronics personnel to use. In this example, both versions of the record have a specific purpose, and both versions are considered official and undergo quality control. Clearly, such a situation is markedly different from the aforementioned situation, where one record is unofficial and does not undergo any form of quality control.

It should be mentioned that RSO's themselves will commonly create unofficial records for such things as lists of survey instruments or tracking physical location of procedures, as a means of consolidating important information. There is noting inherently wrong with such a practice. While such unofficial records can fulfill their purpose of being time-saving reference sheets, they can become a dangerous pitfall if the unofficial record is shared with other workers where it could be relied upon as though it were an official record.

More importantly, if multiple versions of a record are in use, how are they synchronized? If the official version of a record is reviewed by personnel, and the unofficial, unverified versions are casually used by other workers, one can see how transcription errors and inaccuracies can easily and surreptitiously proliferate throughout a facility as I had discovered during the audit.

Perhaps the most important aspect in removing this potentially destructive mechanism in a radiation protection program is for the radiation safety officer to acquire an awareness of where unofficial records might be in use and, more crucially, the extent to which these versions are being relied upon as a source of accurate information.

As far as CNSC expectations go, the following can be said: The CNSC requires a minimum number of records to be kept, which are either explicitly stated in our regulations, or during the license approval phase. These records are held to a quality control standard that is defined in our regulatory documents and verified for compliance.

That being said, it is understood that these prescribed records only consist of a small subset of records that a typical radiation protection program would normally use. Other records that are used by the licensee, but not explicitly required by the CNSC, must still be subject to basic documentation and record control processes. As a matter of quality assurance, a facility that relies on poorly filled, inaccurate records would be subject to CNSC scrutiny, as this could ultimately compromise the safety of the licensed activity, regardless of whether

or not a given record was explicitly prescribed by the CNSC.

Licensees are encouraged to develop tools and creatively innovate as necessary to be more efficient in the operation and oversight of their facility. Time saving reference sheets certainly have their benefit, but one must be mindful of distinguishing them from officially verified records.

2016 is the 9th year in a row that the Accelerators and Class II facilities has submitted an article in the CNSC feedback forum section of Interactions. We are always looking to put in articles on subjects that are relevant to the readers of this newsletter. We would like to hear from you about whether you find these articles useful and what sorts of topics you would like us to address in future. You can send us your comments and suggestions via email: alexandre.colligan@canada.ca

## NEW COMP MEMBERS

Please welcome the following new members who have joined COMP since our last issue:

| Last Name     | First Name | Institute/Employer                  | Membership Type |
|---------------|------------|-------------------------------------|-----------------|
| Al-Abedi      | Mahmoud    | CancerCare Manitoba                 | Full            |
| Barhoum       | Suliman    | CancerCare Manitoba                 | Student         |
| Cantin        | Audrey     | Hôtel-Dieu de Québec                | Full            |
| Coathup       | Andrew     | University of British Columbia      | Student         |
| Diamant       | André      | McGill University                   | Student         |
| Dietz         | Bryson     | University of Alberta               | Student         |
| Doiron        | Tyler      | University of New Brunswick         | Student         |
| Dunning       | Chelsea    | University of Victoria              | Student         |
| Guo           | Kaiming    | CancerCare Manitoba                 | Student         |
| Liu           | Baochang   | Grand River Regional Cancer Centre  | Full            |
| Mainegra-Hing | Ernesto    | National Research Council of Canada | Full            |
| Morrell       | Brian      | University of Alberta               | Student         |
| Reinsberg     | Stefan     | University of British Columbia      | Student         |
| Rojas         | Alexander  | Government of Saskatchewan          | Full            |
| Shirmohammad  | Maryam     | University of British Columbia      | Student         |
| Wallace       | Ron        | Medron Medical Systems              | Corporate       |

Congratulations to our past student members who are now full members: :

| Anderson  | Danielle | Tom Baker Cancer Centre                        |
|-----------|----------|------------------------------------------------|
| Bojechko  | Casey    | Tom Baker Cancer Centre                        |
| Disher    | Brandon  | CancerCare Manitoba                            |
| Granville | Dal      | Ottawa Hospital                                |
| Kamio     | Yuji     | Centre hospitalier de l'Université de Montréal |
| Lausch    | Anthony  | Credit Valley Hospital                         |
| McCowan   | Peter    | CancerCare Manitoba                            |
| McGeachy  | Philip   | CancerCare Manitoba                            |
|           |          |                                                |

#### **CURRENT CORPORATE MEMBERS**



#### Accuray

Phone: 608-824-3422 www.accuray.com

Contact: Andy Simon asimon@accuray.com



#### Elekta Canada

Phone: 770-670-2592 www.elekta.com

Contact: Doris AuBuchon Doris.AuBuchon@elekta.com



#### LAP of America

Phone: 561-416-9250 www.lap-laser.com

Contact:: Don McCreath d.mccreath@lap-laser.com



#### Modus Medical Devices Inc

Phone: 519-438-2409 www.modusmed.com

Contact: John Miller jmiller@modusmed.com



#### PTW - New York

Phone: 516-827-3181 www.ptwny.com

Contact: John Seddo john@ptwny.com



#### CDR Systems Inc.

Phone: 403.483.5900 www.cdrsys.ca

Contact: Martin Carew martincarew@cdrsys.ca



#### Harpell Associates Inc.

Phone: 1-800-387-7168 www.harpell.ca

Contact: David Harpell david@harpell.ca



#### Medron Medical Systems

Phone: 613-903-9811 www.medron.ca

Contact: Ron Wallace ron@medron.ca



#### NELCO

Phone: 781-933-1940 www.nelcoworldwide.com

Contact: Cliff Miller cmiller@nelcoworldwide.com



#### Standard Imaging Inc

Phone: 1-800-261-4446 www.standardimaging.com

Contact: Patrick Karem email:pkarem@standardimaging.com



#### Varian Medical Systems

Phone: 1-650-424-5938 www.varian.com

Contact: Shari Huffine shari.huffine@varian.com



#### **Donaldson Marphil Medical Inc**

Phone: 1-888-933-0383 www.donaldsonmarphil.com

Contact: M. Michel Donaldson md@donaldsonmarphil.com



#### Landauer Inc

Phone: 708-755-7000 www.landauerinc.com

Contact: Josh Hutson sales@landauerinc.com



#### **Mobius Medical Systems**

Phone: 888-263-8541 www.mobiusmed.com

Contact: Neal Miller neal@mobiusmed.com



#### Philips

Phone: 1-877-744-5633 www.philips.com/healthcare

Contact: Michel Brosseau Michel.brosseau@philips.com



#### Sun Nuclear

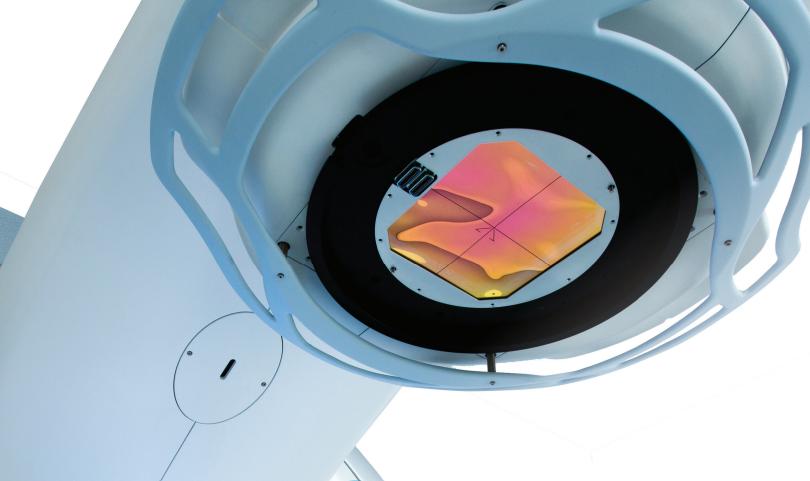
Phone: 321-259-6862 ext 251 www.sunnuclear.com

Contact: Konstantin Zakaryan konstantinzakaryan@sunnuclear.com



# PerFRACTION™ 3D

# Efficiency Without Compromise – A New Day For Patient Safety


It is now possible to cut your QA workload without cutting corners. PerFRACTION 3D is automated radiation measurement QA for both pretreatment verification and per-fraction in-vivo monitoring. Delivery results are automatically captured, analyzed, and saved for you. QA failures, including patient setup and anatomy errors, are automatically emailed to you. PerFRACTION identifies the likely source of error automatically and quantifies the impact to clinical goals. **PerFRACTION - Assuring Quality, Not checking boxes.** 

Distributed by









# VERSALID MEETS ITS PERFECT MATCH

Versa HD

The powerful combination of Versa HD™ and Monaco® delivers a unique blend of unrivaled dose delivery and intelligent dose planning. With the ultra-low transmission of Agility™ and Monaco's Monte Carlo accuracy, dose delivery to the target can be precisely controlled while ensuring surrounding anatomy is protected. Together, they make dynamic and stereotactic techniques not only possible but routine practice. GO BEYOND with Versa HD and Monaco.

**VISIT VERSAHD.COM** 



# CALL FOR BOARD NOMINATIONS

The COMP Awards and Nominations Committee is responsible for presenting a slate of nominations for the COMP Board of Directors to ensure that the organization is governed with excellence and vision. There will be two openings on the Board of Directors as of the 2016 Annual General Meeting.

#### VICE-PRESIDENT

The Vice-President serves a two-year term and has the following responsibilities:

- 1. To work in conjunction with other Board members in the best interest of the organization.
- 2. To prepare for, attend, and actively participate in all Board meetings and relevant committee meetings. In-person meetings take place in November and at the Annual Scientific Meeting, and there may be up to four (4) teleconferences.
- 3. To oversee projects and assume responsibilities as required.
- 4. To represent the President in his/her absence.

While certainly not necessary, there is an expectation that the Vice-President would be willing to stand for the position of President when that position becomes available.

#### **SECRETARY**

The Secretary is responsible for overseeing the policies and records of the organization. The Secretary is expected to attend and record the minutes of the Board and Executive committee meetings and may be asked to oversee taskforces and other projects as designated by the President. The Secretary also works with the COMP office as required to review applications for membership and confirm the applicant's eligibility.

Nominations for these roles are due **April 29th, 2016** and **must be accompanied** by a duly signed Expression of Interest and Nomination Form endorsed by no fewer than two (2) voting members of COMP as well as a brief bio. To access the nomination form, please visit www.comp-ocpm.ca or contact the COMP office.



62nd Annual Scientific Meeting July 20th - 23rd, 2016, St. John's, NL

# Colourful INTERACTIONS Colorées



#### MESSAGE FROM THE COMP PRESIDENT

Continued from page 5

the optimal use of technology within our hospitals? How do we communicate the benefits of highly trained personnel to senior hospital management so that our skills are effectively used? Are young physicists aware and engaged in leadership challenges so that natural leaders step forward?

What is to be done? First and foremost, I think this subject must be easier to discuss, and the focus should be broad leadership development, and not a certification activity. What is needed is a more modern approach to leadership training that is focussed on skills and recognition that are aligned with leadership in the greater health care system and society generally, rather than being focussed

predominantly on technical excellence. Unfortunately, other than in the medical physics community in Canada, the FCCPM honorific is largely unknown and unrecognised, which I would suggest has a negative effect on leadership development. Alternatively, I believe that skills that are recognised and valued by senior managers within the healthcare community would be much more useful to leadership development for our members.

The purpose of this message is not to suggest solutions, but to open a discussion for the entire community and try to focus this on a general approach to leadership development. There are several paths forward. We could do nothing, and keep our status quo; we could try to develop leadership

training specifically for our members; we could partner with other organisation/professions for development of leadership skills; or we could do something else entirely. If as a community we can discuss and agree on how to proceed, we will be stronger as a profession. So, with this in mind, please discuss this subject with your colleagues, with COMP board members when you see them, or with me, either by sending me an email, by calling me on the phone, or by approaching me at a conference. I would be very interested to know what COMP members have to say about developing medical physicists into more effective leaders in the health care setting.

#### DATES TO REMEMBER

April 15th: ASM Abstracts submissions closes

April 29th: Deadline for Board nominations

April 29th – May 3rd: ESTRO, Turin, Italy April 30th: Early bird deadline for exhibitor registration

May 11th: Early bird deadline for ASM attendee registration

May 20-21: International Workshop on Brachytherapy for the Treatment of Endometrial and Penile Cancer, Montreal, QC June 1st: Deadline for articles for July interACTIONS issue June 28th: Hotel room block ends July 20 – 23rd: ASM in St. John's, NL

# 2016 STUDENT COUNCIL ELECTION

The COMP Student Council (SC) is lead by a Chair and Vice-Chair. It is their responsibility to officially represent the COMP student membership on the Science and Education Committee and to call regular meetings of the SC. Annually, the Vice-Chair is promoted to the position of Chair (the previous Chair steps down) and an election is held to select a new Vice-Chair. Eligible nominees must have been active members of the COMP SC for a minimum of 6 months. An election will be held at the Student Luncheon at the 62nd Annual Scientific Meeting in St. John's, Newfoundland. Every student member of COMP is eligible to vote.

The 2016 Nominees for Student Council Vice-Chair are:

- · Sahar Darvish, McMaster University, Hamilton, Ontario
- · Parisa Sadeghi, University of Calgary, Calgary, Alberta
- · Patricia Oliver, Carleton University, Ottawa, Ontario

Please visit **www.comp-ocpm.ca** or the COMP Student Council Facebook page for more election details. If you are interested in joining the Student Council, or for any other feedback and ideas, please send an obligation-free email to our current Chair (Olga Dona, donaleom@mcmaster.ca). We always love to hear your opinions!

# ARE PHYSICS ASSISTANTS A BAD IDEA?

# A RESPONSE TO THE MED. PHYS. 43 (1) POINT/COUNTERPOINT, "MEDICAL PHYSICIST ASSISTANTS ARE A BAD IDEA"

#### Silvia Neuteboom

The Ottawa Hospital Cancer Center

In the January 2016 edition of Medical Physics, Dr. Doracy P. Fontenla of Memorial Sloane Kettering Cancer Center, and Dr. Gary A. Ezzell of the Mayo Clinic Arizona argue the Point/Counterpoint proposition that "medical physicist assistants are a bad idea." Although the authors are discussing the American medical physics milieu, this is an interesting topic for the Canadian medical physics community as well.

In Canada, large centers do employ physics associates (who are sometimes called assistants or technologists or other titles) to handle some of the medical physics workload. Most commonly, associates are tasked with the 'heavy lifting' of bulk, routine QA measurement. For example, at The Ottawa Hospital Cancer Center, where I work, physics technologists do 50+ patient DQA measurements per week in support of the Tomotherapy and VMAT treatments, and another 80 machine QA test lists, each consisting of on average six to eight test items, weekly. This type of work is referred to by Dr. Fontenla as belonging more properly to a junior medical physicist position; however, after the learning curve is over, a fully qualified medical physicist would find these tasks, not only unchallenging, but careerstifling. Therefore, as Dr. Ezzell points out, to ensure that the professional abilities of a qualified medical physicist are valued, as well as utilized to their full capacity, physics associates are necessary.

The concern is raised by Dr. Fontenla that the use of MPAs in the US will erode the availability of physicist jobs. A brief perusal of Internet job listings for 'medical physics' tells a different story: of 14 listings found on Indeed.com on a given day, for example, seven were for medical physicists, three were for medical physicist assistants, and four were for other positions in the medical physics world. On the AAPM website, the job listings show not a single one for MPAs. Here in Canada, at the time of writing this article, there was currently one listing for a physics assistant with the BC Cancer Agency, three listings on the COMP website for full time medical physicists, and one for a residency. By the numbers alone, medical physicist vacancies remain in the majority,

which indicates that the need for qualified medical physicists is not disappearing under a wave of poorly qualified MPAs hired by overly budget-conscious hospital administrators.

Both authors make the point, although approaching it from different sides, that the key to whether medical physicist assistants are a good idea or not lies in their training and qualifications. Another quick perusal of the US want ads shows no consistency around the issue of qualifications – of the three MPA vacancies advertised, all three had different educational requirements, ranging from 'not specified' to a Masters in Medical Physics. All three also list different duties in the job description. It seems that at present, there is no 'one size fits all' scenario. In reality, the education and training needed to do a physics associate's job is going to depend greatly upon what the job entails. For a PA who will be performing only routine QA measurements, perhaps a B.Sc. in Physics or Engineering is sufficient, but an employee who will be acting as a QC coordinator or even as a research assistant or computer programmer may need a Masters, or qualifications from outside the world of medical physics, such as a computer science degree, Lean certification, or even an engineering degree. Even with such qualifications as prerequisites, any candidate lacking prior medical physics experience who is hired to be a PA will obviously still require extensive on-the-job training, as linacs, Tomotherapy machines, and Cyberknifes are still not common instructional materials in the average Canadian university. Even those with prior medical physics experience will still need to be oriented to the equipment, policies, and procedures of the new workplace.

The key, then, to ensuring that physics associates are a 'good idea', lies in the training and supervision provided by the hiring department. As Dr. Ezzell points out, PAs must work under the supervision of qualified medical physicists. However, an experienced PA can – and should be allowed to – perform the job with minimal oversight; it makes no sense for the physicist to micromanage an

employee who, by dint of years of practical, handson experience, may in fact be more familiar with
the process than the physicist themselves. Having
a PA who is a mere 'button-pusher' is also not
sufficient, for in the radiation therapy department,
button-pushing without understanding is a source of
disaster. Thus the preferred role for the physicist to
play here is not not only supervising, but imparting
knowledge, so that the PA may become a useful
support to the physicist and to the department as a
whole. To get a PA to this point requires a complex
mix of both formal and on-the-job training, judiciously
supplemented by outside courses and other careerdevelopment opportunities.

The medical physics department that chooses to invest in their staff in this way wins many benefits. To start with, an enormous burden of profoundly routine work is shifted off the shoulders of the physicist, freeing him to do what a Ph.D. must do best: think. In this time of increasing technological complexity, almost every clinical challenge that crosses a physicist's desk requires a thoughtful and unhurried approach to finding a solution. As we all know, the modern healthcare environment does support thoughtful and unhurried approaches, therefore, anything that can enable them should be welcomed.

Likewise, when she/he knows a capable and trained person can be trusted to perform essential tasks (such as QA) to a high standard, the burden of worry is also lifted from the physicist's mind. A rock-solid QA program, staffed by knowledgeable PAs, provides a steady stream of reliable data on machine performance, which the physicist can then utilize without undue concern. On the other hand, a QA program staffed with a constantly revolving cast of temporary data collectors, such as students and residents, will always suffer the vicissitudes of repeated cycles through the learning curve and will always have question marks hanging over the data produced thereby.

It also seems obvious that there is inherent waste in asking a clinical professional like medical physicists to invest considerable amounts of their time in the mundane day-to-day operational decisions and

chores of the department. Things like inventory upkeep and equipment repair, radioactive source shipping, reading in-vivo dosimeters, and computer coding are better done by other staff. It is the role of a physicist to innovate; how can innovation occur when said physicist is, for example, off in the source room peeling trefoil labels from an empty bucket of HDR sources?

The final bogeyman raised by Dr. Fontenla in Point/ Counterpoint is that having less-qualified individuals perform certain tasks can be dangerous. Dr. Ezzell counters this by pointing out that he can find no evidence in the literature cited that supports this view. To this I would add, out of my own experience, the assertion that well-educated physics associates, who know what to look for, can serve as yet another set of eyes on the lookout to protect the patient from adverse occurrences.

Even without the benefit of a Ph.D., a residency, or CCPM certification, physics associates in Canada know, understand, and take seriously their duty to provide patients with the safest, most efficient, best possible care. That includes knowing when it is time to step back and defer to the professional judgement of the physicist. PAs, sensibly, will not overstep the bounds of professional practise that govern medical physics or take upon themselves judgments they should not. Now, the onus, the challenge, is on the medical physicist to recognize in turn, the capabilities and possibilities offered by good physics associates.

In conclusion, then, the question to be asked is not whether PAs are a good idea, but, how do we, the medical physics community, ensure that our job, our one job of caring for patients, is done excellently? The answer lies not in a 'circling of the wagons' around the profession of medical physicist; but in fully engaging all possible resources, including physics associates, in the task at hand.

-- Silvia Neuteboom, B.Sc. is a Physics Technologist employed at The Ottawa Hospital Cancer Center since 1999. She is the former Chair of Medical Physics Associates of Canada (www.ompac.ca) and continues to advocate for the professional advancement of PAs.

# ERVIN PODGORSAK AND MARTIN YAFFE INVESTED INTO THE ORDER OF CANADA

On 2016 February 12 at Rideau Hall in Ottawa, Governor General David Johnston bestowed the honour of Membership in the Order of Canada (C.M.) on two very accomplished Canadian medical physicists: Ervin B. Podgorsak C.M., Ph.D., FAAPM, FCCPM, FCOMP, Professor Emeritus, McGill University, and Martin J. Yaffe C.M., Ph.D., FAAPM, Senior Scientist, Sunnybrook Research Institute, and Professor of Medical Biophysics, University of Toronto.

Quoting the official website (www.gg.ca/honours), "Established in 1967 by Her Majesty Queen Elizabeth II, the Order of Canada is the cornerstone of the Canadian Honours System, and recognizes outstanding achievement, dedication to the community and service to the nation. The Order recognizes people in all sectors of Canadian society. Their contributions are varied, yet they have all

enriched the lives of others and made a difference to this country. Since its creation, more than 6,000 people from all sectors of society have been invested into the Order. The Order of Canada's motto is DESIDERANTES MELIOREM PATRIAM (They desire a better country). Her Majesty The Queen is the Sovereign of the Order, and the Governor General is the Chancellor and Principal Companion of the Order."

Drs. Podgorsak and Yaffe join other notable Canadian medical physicists honoured during previous Order of Canada investiture ceremonies: Harold Johns in 1978, Sylvia Fedoruk in 1987, and J. R. ("Jack") Cunningham in 2005.

Order of Canada, Member insignia. Manufactured in Ottawa by the Mint, in fine silver. The design was set in 1967. Source: www.gg.ca/honours





Official photos of (previous page) Ervin Podgorsak, and (this page) Martin Yaffe being congratulated by Governor General David Johnston. Source: MCpl Vincent Carbonneau, Rideau Hall, ©Her Majesty The Queen in Right of Canada represented by the Office of the Secretary to the Governor General, 2016.

# HERE ARE THE OFFICIAL CITATIONS:

"Ervin Podgorsak, C.M. (Montréal, Quebec):

Ervin Podgorsak is a medical physicist who has made important contributions to cancer treatment and education. During his 35-year career at McGill University, he developed its medical physics unit into one of the pre-eminent academic programs for graduate work in Canada. He mentored a generation of medical physicists while leading the development of pioneering techniques in radiation oncology. As a prominent member of the medical community, he has also been an outspoken advocate for high-quality and accessible health care for all Canadians."

"Martin Yaffe, C.M. (Toronto, Ontario):

Martin Yaffe's groundbreaking contributions to medical imaging research have saved women's lives worldwide. Senior scientist at Sunnybrook Research Institute and a Professor of Medical Biophysics at the University of Toronto, he pioneered the development of digital mammography, which is now in widespread use, and helped establish breast density as a risk factor for breast cancer. An advocate for women's health, he is internationally respected for his ongoing efforts to improve breast cancer detection methods. He is sought after for his expertise and strong communication skills, which have enlightened public discussion on women's health."

# NOTES FROM THE 7TH CANADIAN WINTER SCHOOL ON QUALITY AND SAFETY IN RADIATION ONCOLOGY

#### **Michael Lamey**

Peel Regional Cancer Centre

Recently the 7th annual Canadian Winter School was held, Feb 7th – 11th, and was hosted at the Fairmont Le Chateau Montebello, in Montebello, Quebec. The meeting was once again chaired by Dr. John Kildea and was attended by 94 delegates, including eight faculty members (most of whom are shown in the second photo). The participants came from Canada, the US, Ireland, and India. The breakdown of professionals in attendance was: 29 therapists, 28 physicists, 17 oncologists, 6 Canadian patient advisors and 5 industry partners. Five of the faculty members represented "other" professions: two patient involvement advocates, one WHO representative, one registered nurse, and one MD working on informatics.

The multi-disciplinary organizing committee, shown in the second photo, organized the Winter School with the following curriculum: teamwork, patient involvement, high-reliability organizations, the second victim, quality of medical data, and practical advice on how to affect real change. The didactic- and workshop-based program was spread out over a four day period. Each faculty member contributed toward one or more of these curriculum topics via presentation and/or leading the group through workshops. The workshops were designed to engage participants and allow them to share their thoughts and learning experience with all attendees. The program also consisted of three project galleries in which participants could choose between a variety of 15 minute presentations depending upon their interests. Three square meals as well as coffee breaks provided an excellent opportunity to network and share experiences. For those interested, links to all presentations and the references therein given by the speakers are provided on the Winter School website (comp-ocpm.ca/2016-winter-school).

Day one was kicked off by the keynote speaker, Margaret Murphy, who is the external lead advisor of the Patients for Patient Safety steering committee at the World Health Organization. Margaret presented a very powerful personal story involving the loss of her son Kevin due to medical error. The tone for many of the presentations and workshops which followed was set. The title of her presentation was "The Patient Experience as a Catalyst for Change". Margaret discussed patients as a potential source

to drive improvement in all aspects of their care. She then shared her hope that a framework to learn and improve from errors would become ubiquitous. A quote provided by her: "Around the world, healthcare organisations that are most successful in improving patient safety are those that encourage close cooperation with patients and families," taken from the Safety First (Department of Health, UK, 2006) document, strongly backed her work and the purpose behind one of the main themes of this year's Winter School.

Margaret Murphy's keynote address was followed up by Dr. Todd Pawlicki, from the University of California, San Diego, who discussed improving the organizational aspects of safety in radiation medicine. He introduced concepts of system theory and outlined the structure of high reliability organizations (ones that manage to rarely fail despite very complex, high-risk circumstances). Mona Udowicz, Director of Quality, Safety and Patient Experience at CancerControl Alberta, discussed quality and safety in radiation medicine. Two important topics included: the multidimensional aspects of quality and the framework for operational excellence. Dr. Peter Gabriel, MD, from the Perelman Center for Advanced Medicine in Philadelphia completed the faculty presentations on day one by presenting on how informatics can be used to improve quality and safety in health care.

Day two started with a vendor-sponsored breakfast presentation by Yves Archambault from Varian Medical Systems; the presentation was not related to the academic program or part of the CME credits. Yves presented Varian's effort to incorporate the foundation model of anatomy into the Eclipse planning system. He then presented some results on RapidPlan (knowledge based planning) in Eclipse. Following breakfast, Cheryl Connors, Patient Safety Specialist at the Armstrong Institute for Patient Safety and Quality at Johns Hopkins Hospital in Baltimore, presented on the implementation of a peer support program at Johns Hopkins. The concept of the Second Victim was presented and components of their RISE (Resilience in Stressful Events) program were touched on. The afternoon gave the delegates a chance to either relax or get involved in one

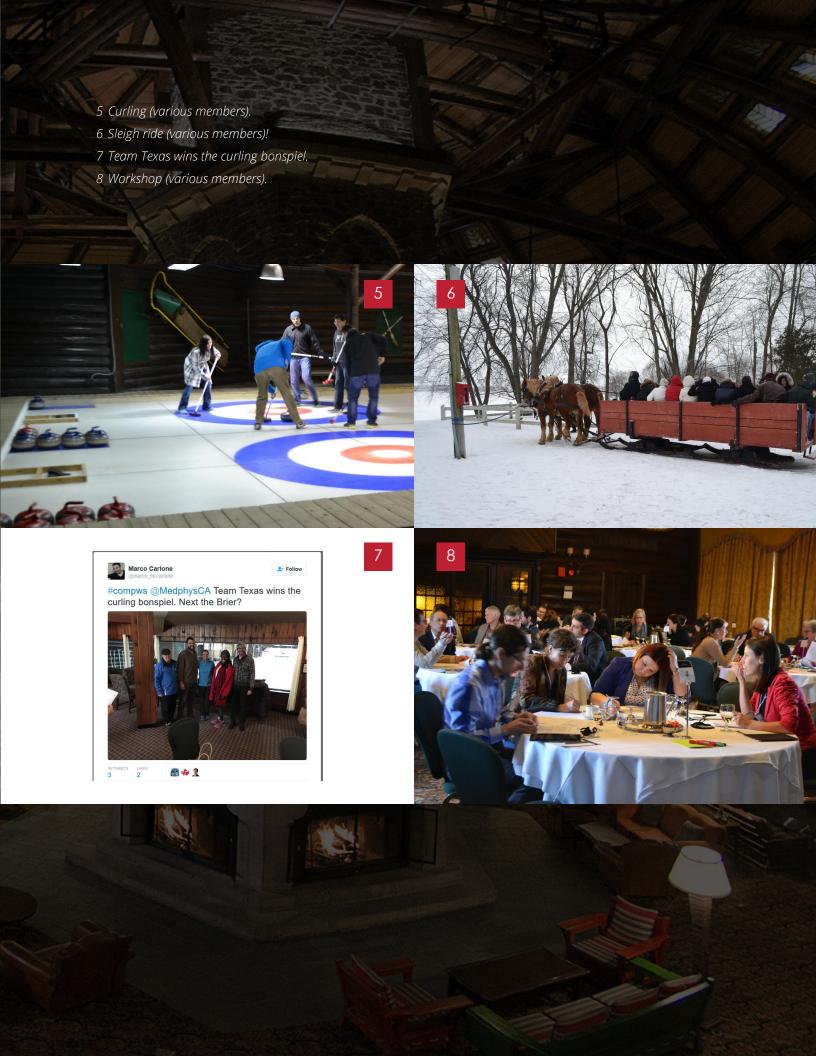
of two organized social events: a curling match or a horse-driven sleigh ride. Approximately 20 individuals braved the bitter cold sleigh ride and six teams of curlers enjoyed a relaxed semi-round robin tournament. No one was injured and all had a good time!

Day three was perhaps packed heaviest and the main theme was that of patient involvement. Esther Green, from the Canadian Partnership Against Cancer, kicked off the day by describing patient engagement frameworks, as well as outlining the need to move from a provider-focused system to a personfocused system. Prof. Laurie Hendren, a professor and Canadian Research chair at McGill University, then presented her experience as a cancer patient. In partnership with Laurie, the radiation therapy department at McGill is in the beta-testing phase of an app that patients can use to view their progress along the course of therapy – an excellent example of how patient partnerships can work. Following Laurie, the delegates had a chance to hear from the six patient volunteers who shared their experiences during treatment. Hearing the perspective from patients was unlike any experience I had ever had at any conference. As physicists, it is rare that we hear the thoughts/concerns from our patients. Dr. Karine Vigneault, Patient Participation Approach Coordinator at the McGill University Health Centre, built upon the theme of the day by discussing how to build effective partnerships with patients. Two important aspects of her presentation were that a recruitment process is necessary and that a patient advisor (someone with a lot of experience) can play a key role.

In order to promote a multi-professional environment, the Winter School provided two therapists and two residents/fellows with a scholarship based upon work submitted at their institution. The therapist scholarships were sponsored by COMP and the resident/fellow scholarship by CARO. These scholarship winners completed the day three presentations. The winning therapy abstracts were:

"Applying Human Factors Principles to Dynamic Documents in ARIA-RO." Presented by Heather Giovannetti from the Jack Ady Cancer Centre/CancerControl in Alberta.

"A Multimedia Patient Education Initiative-Accessing the Perceptions of Patients and Radiation Therapists." Presented by Salman Arif from the Hamilton Health Sciences- Juravinski Cancer Centre in Ontario. And the winning resident/fellow abstracts were:


"Automated Quality Assurance at Breast Cancer Rounds – A Process to Improve Efficiency and Quality of Patient Care." Presented by Dr. Kathy Rock from Princess Margaret Hospital, UHN in Toronto.

"Dose Site Summary Simplified – A graphical Illustration to Facilitate Evaluation of Potential Re-Treatment Overlap." Unfortunately Dr. Han Kim, from Princess Margaret Hospital, was unable to present due to the birthday of his baby son.

Day four was a shorter day which included the final project galleries, the final workshop, a rapporteur talk by Dr. Todd Pawlicki which summarized the salient points of each of the presentations, and the school was wound-down with a question-and-answer session in the form of the traditional faculty fishbowl.

As a first time attendee, I noted that the vibe at the Winter School is one of community in which it is easy to network and share experiences. The curriculum at the Canadian Winter School is unlike any didactic teaching in a medical physics program (I cannot comment upon the training programs of other disciplines) and for that reason alone is highly recommended. As stated previously, all talks and the references therein are provided on the Winter School website for anyone who is interested (comp-ocpm. ca/2016-winter-school). Finally, the Winter School has a Facebook page (https://www.facebook.com/ COMPWinterSchool/), and the organizers encourage both participants and non-participants to share their successful quality and safety stories with the community.





#### **EXECUTIVE DIRECTOR REPORT**

Continued from page 7

individuals from a diversity of backgrounds, and a hands-on networking experience will be the highlights of this workshop. This workshop is included in the ASM registration fee. We look forward to seeing you in St. John's.

April is volunteer month in Canada. Generally speaking, volunteerism in professional associations is declining; however, this has not been my experience with COMP. We are fortunate to have an engaged membership which has resulted in a committed group of volunteers – thank you all!

I would like to take this opportunity to introduce you to my colleague, Christina Mash, who will now be working with Gisele and myself to provide support to COMP. Christina will be involved primarily in communications and will also provide support for our educational activities.

Thank you as always for your support. Please feel free to contact me at any time with any questions or suggestions for improvement.

Happy Spring!







Better. Safer. Simpler. Patient and machine QA with OCTAVIUS® for Cyberknife®

# **Dosimetry and QA Solutions for SRS and SBRT**

Where small changes can make a big difference, choosing the right QA tool is essential.

Whatever you need for SRS/SBRT testing, be it a micro detector, small-field water tank, high-resolution detector array or versatile QA software, PTW has the right solution for you.

Contact us to find out why.













More information on small field dosimetry? Contact us for a free copy of our application guide "Small Field Dosimetry" at ptw@ptwny.com or download it from our website.



THE ONLY SOFTWARE THAT BRINGS INTO FOCUS HOW DOSE IS AFFECTED BY DAILY CHANGES IN PATIENT POSITION.

TUMOR SIZE
COUCH ORIENTATION

PATIENT WEIGHT

FRAME FIT

# **ADAPTIVO**<sup>TM</sup>

Capture what others can't even see.
AUTOMATIC PATIENT DOSIMETRY SOFTWARE

www.standardimaging.com/adaptivo



