### Getting Ready for a Clinical Physics Career: Is this the right choice for you?

#### Jerry Battista, PhD, FCCPM, FAAPM, FCOMP

Professor, Departments of Oncology and Medical Biophysics, Western University

Director, Physics Research & Education London Regional Cancer Program

London, Canada



### Colourful INTERACTIONS Colorées

## This Lecture is dedicated to Michael

### Michael B. Sharpe









Why a career in clinical physics? Section Pathway(s) CAMPEP-o-mania Residency Positions (Ontario)
 Interview Preparation • Workforce Projections Biology-Physics Synergy?



Government of Canada

nt Gouvernement du Canada



Canadian Société Cancer canadienne Society du cancer

Produced by Canadian Cancer Society, Statistics Canada, Public Health Agency of Canada, Provincial/Territorial Cancer Registries cancer.ca/statistics

## It's Exciting ! Convergence of Imaging-Therapy





















### Has Clinical Impact! Radiation Oncology affects 40-50% of patients



Analysis by: Health Statistics Division, Statistics Canada Data sources: Canadian Cancer Registry database and life tables at Statistics Canada

#### Canadian Cancer Statistics 2014



|                            | University/<br>Research Institute                                    | Industry                                     | Clinical                                                              |
|----------------------------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|
| Research<br>Activity       | "R&D"<br>Curiosity-Driven                                            | "R&D"<br>Commercially-<br>driven             | "R&D"<br>Clinically-driven                                            |
| Clinical Role              | Limited or Split                                                     | New Products<br>Technical Support            | Clinical Procedures<br>Clinical Trials                                |
| Translational<br>Research  | Longer Term                                                          | Intermediate<br>Term                         | Short Term                                                            |
| Teaching                   | Courses/Labs Instructor<br>Graduate students<br>Residents<br>Fellows | Training Courses<br>Staff<br>Customers       | Courses (partial)<br>Graduate students<br>Residents<br>Hospital Staff |
| Stressors                  | Grants - "Publish or Perish"<br>Lectures - prep<br>Student mentoring | Product Releases<br>Trade Shows<br>Customers | Clinical Deadlines<br>On-Call Duties                                  |
| Job Demand<br>Job Security | Fair<br>Very Good (Tenure Track)                                     | Good<br>Variable                             | Good (Oncology)<br>Very Good                                          |
| Travel                     | Very Good (with grants)                                              | Excellent                                    | Good (Regulated)                                                      |
| Internationalism           | Encouraged                                                           | On-Demand                                    | Physicists without Borders                                            |
| Salary & Benefits          | Very Good                                                            | Wide Range                                   | Excellent (Oncology)                                                  |

## It Pays Well!



Salary, Benefits, Vacation, Allowances, Flexibility

#### TYPICAL SALARY RANGES FOR AAPM MEMBERS WORKING IN CANADA

#### Salaries are in thousands of Canadian dollars



PhDs certified 20/80 Percentiles \$121– \$183k /yr

|                                      |        |                     |         | Primary Income |        |       | 1 otal Income |       |        |       |  |
|--------------------------------------|--------|---------------------|---------|----------------|--------|-------|---------------|-------|--------|-------|--|
|                                      |        |                     |         | Percentiles    |        |       | Percentiles   |       |        |       |  |
|                                      | Number | Median<br>Yrs Exper | Average | 20th           | Median | 80th  | Average       | 20th  | Median | 80th  |  |
| Overall                              | 150    | 14                  | 139.3   | 105.0          | 141.3  | 168.0 | 141.7         | 107.1 | 143.3  | 174.2 |  |
| Masters no cert.                     | 5      | 17                  | 101.7   |                |        |       | 101.7         |       |        |       |  |
| Masters with cert.                   | 40     | 20                  | 138.7   | 105.1          | 139.8  | 173.6 | 143.6         | 106.1 | 149.0  | 178.0 |  |
| PhDs no cert.                        | 28     | 6                   | 111.3   | 83.2           | 112.4  | 132.8 | 112.6         | 83.2  | 113.8  | 132.8 |  |
| PhDs with cert.                      | 76     | 13                  | 153.0   | 121.2          | 153.1  | 183.0 | 154.5         | 121.2 | 154.5  | 185.0 |  |
| PhD -With Certification (all data be | low)   |                     |         |                |        |       |               |       |        |       |  |
| Gender                               |        |                     |         |                |        |       |               |       |        |       |  |
| Male                                 | 57     | 15                  | 156.8   | 128.0          | 156.0  | 186.6 | 158.7         | 128.0 | 156.0  | 188.2 |  |
| Female                               | 19     | 10                  | 141.4   | 106.0          | 150.0  | 162.6 | 142.0         | 106.0 | 150.0  | 162.6 |  |
| Type of Position                     |        |                     |         |                |        |       |               |       |        |       |  |
| Primarily Clinical                   | 61     | 11                  | 147.2   | 120.0          | 150.0  | 168.0 | 148.7         | 120.0 | 152.0  | 170.0 |  |
| Primarily Academic                   | 7      | 30                  | 172.7   |                |        |       | 173.4         |       |        |       |  |
| Primarily Administrative             | 6      | 20                  | 179.1   |                |        |       | 179.1         |       |        |       |  |
| Certification                        |        |                     |         |                |        |       |               |       |        |       |  |
| ABR-Therap. Rad. Physics             | 8      | 14                  | 158.8   |                |        |       | 161.3         |       |        |       |  |
| CCPM                                 | 72     | 13                  | 152.0   | 121.8          | 153.1  | 177.9 | 153.3         | 121.8 | 154.5  | 182.0 |  |
| Primary Employment                   |        |                     |         |                |        |       |               |       |        |       |  |
| Government Hospital                  | 36     | 14                  | 148.8   | 121.2          | 154.5  | 171.9 | 149.9         | 121.2 | 154.5  | 171.9 |  |
| Med School or Univ Hospital          | 15     | 20                  | 168.5   | 117.5          | 170.0  | 207.6 | 172.4         | 119.8 | 175.0  | 207.6 |  |
| Cancer Center                        | 17     | 10                  | 144.9   | 118.8          | 143.0  | 170.4 | 144.9         | 118.8 | 143.0  | 170.4 |  |
| Primary Discipline                   |        |                     |         |                |        |       |               |       |        |       |  |
| Radiation Oncology                   | 62     | 14                  | 156.1   | 128.0          | 155.0  | 185.6 | 157.5         | 128.0 | 155.5  | 186.6 |  |
| Years Experience                     |        |                     |         |                |        |       |               |       |        |       |  |
| 0 - 2                                | *      | *                   | 8       | *              | *      | *     | *             | 8     | *      | *     |  |
| 3 - 4                                | 6      | 4                   | 110.6   |                |        |       | 113.4         |       |        |       |  |
| 5-9                                  | 18     | 7                   | 130.9   | 110.6          | 137.5  | 147.2 | 134.2         | 111.0 | 137.5  | 148.2 |  |
| 10 - 14                              | 15     | 12                  | 151.6   | 142.2          | 152.2  | 163.4 | 152.1         | 143.2 | 152.2  | 163.4 |  |
| 15 - 19                              | 11     | 15                  | 169.0   |                |        |       | 171.5         |       |        |       |  |
| 20 - 24                              | 15     | 22                  | 174.7   | 156.7          | 171.0  | 197.7 | 174.7         | 156.7 | 171.0  | 197.7 |  |
| 25 - 29                              | *      | *                   | 8       | *              | *      | *     | *             | 8     | *      | *     |  |
| 30 +                                 | 7      | 30                  | 181.1   |                |        |       | 181.8         |       |        |       |  |
|                                      |        |                     |         |                |        |       |               |       |        |       |  |



• Why a career in clinical physics? • Education Pathway(s) CAMPEP-o-mania Residency Positions (Ontario) Interview Preparation Workforce Projections (Canada) Biology-Physics Synergy?





• Why a clinical physics career? Education Pathway(s) CAMPEP-o-mania Residency Positions (Ontario) Interview Preparation • Workforce Projections Biology-Physics Synergy?

#### Staffing Crisis of 1990's MEDICAL PRACTICE • PRATIQUE М ÉDICA STAFFING SHORTFALL PLAGUES RADIATION ONCOLOGY Dr. Charles Hollenberg President, Cancer Care Ontario Susan Thorne Cancer overhaul vital, doctors warn Bad planning called key reason 'It scares for huge backlog in treatment the hell doctors what services are **By Lisa Priest** out of you available so they can make TORONTO STAR timely decisions for their cancer Plagued by huge waiting lists Ontario Health Minister Ruth to wait' Grier says she is committed to MONTREAL THE GOAL SINCE 1778 solving the waiting list problem, and believes reallocating for care hospital resources is one way of "I'd like to get together with Continued from page A THE GAZETTE, MONTREAL, SATURDAY, OCTOBER 3, 1998 COMMENT **Quebecers deserve better** Health-care budget cuts have led to heavy staff workloads at radiation-therapy centres (30 of 149): 23 per cent of radiotherapy drew attention to much higher staff cial health-care budgets, and are gener-ERVIN B. PODGORSAK technologists (197 of 855); and 16 per Bouchar workloads in Quebec than the rest of ally shielded from cuts that are applied orld-class and now steadi-Canada. It would be hard to suggest to over-all hospital budgets. cent of radiation dosimetrists (20 of ameliora Managing radiation In Quebec, on the other hand, there bec servi 123). declining toward mediocrity, that there is any fat to cut there. Radiation oncologists in the rest of averages Radiation therapy is one of three are seven radiotherapy centres, which Quebec's health-care system medical specialties used in cancer operate as radiotherapy departments Canada treat, on average, 244 cancer tant area en much in the news lately. And mally while Quebec radiation. therapy queues P. Dickof FCCPM, A. Firth FRCR, C. Foord RT(T), and V. Lusk CA

R 6

## **Ontario Residency Program**

https://www.cancercare.on.ca/cms/one.aspx?pageId=9352

### • GOAL: Steady supply of Medical Physicists to Ontario

- Reduce reliance on external recruitment
- Focused on Radiation Oncology
- Standardized clinical training
  - Ontario-wide and CAMPEP compliance (in progress)
- ~20 positions (2 year program)
- I0 openings/yr



Ministry of Health and Long-Term Care

#### 



#### **Paramount Pictures**



## Typical Format

- Normally lasts <sup>1</sup>/<sub>2</sub> to 1 full day
- Includes a facility/people tour
- Presentation is normally invited (PhD Project)
- Interview Panel (4 or 5)

## J<sup>2</sup>B's Interview Tips

- Sleep well the night before
- Stay hydrated ! Limit coffee intake
- Why us? Know "Specialty of the House"
- Why you?
  - Highlight your CV <u>briefly</u>
- Why Clinical Physics?
  - Avoid family experience with cancer
  - Know the career path and evolution
- Answer questions directly and concisely
  - Review CAMPEP core topics: Radiation Physics/Biology
  - If question is vague/muffled/convoluted ask for clarity
  - No clue? Say so and guesstimate cautiously
  - Stand up and use Graphics/Whiteboard

### **Preparing for an Interview**

Ke unskanna Kans K,  $(k_1, k_2, k_3) = 6A^2 \int_{N_{\rm c}}^{0.01} \times S$ I bispectrum is:  $= 2 \int_{k_{e}}^{k_{e}} \left[ P_{\bar{\Phi}}(k_{i}) P_{\bar{\Phi}}(k_{2}) + 1 \right]$  $+ \frac{1}{2}(k_z) P_{\Phi}(k_z) = 2A^2 \int_{M_z}^{L_z}$  $\sum_{k=1}^{n} P_{\Phi}(k_i) P_{\Phi}(k_3) + 2 \overline{f}_{NL}^{RIF}$  $(k_1k_1k_3) = 2 f_{NL}^{IJK} P_{\mathcal{C}}(k_2) P_{\mathcal{O}}$ C, X. P C R Fleld  $\begin{aligned} \chi_{2}\chi_{3,LISW} &= C_{\ell_{2}}^{\chi_{2}p} \widetilde{C}_{\ell_{3}}^{\chi_{1}\chi_{3}} \underbrace{f}_{\ell}^{\chi_{1}} \\ f_{\ell_{3}} &+ C_{\ell_{3}}^{\chi_{3}p} \widetilde{C}_{\ell_{1}}^{\chi_{1}\chi_{2}} \underbrace{f}_{\ell_{3}} \end{aligned}$ VS AN CEP are the 



Why a career in clinical physics?
Education Pathway(s)

- Radiation Oncology only
- CAMPEP-o-mania
- Residency Positions (Ontario)
  - Interview Preparation
- Workforce Projections
- Biology-Physics Synergy?

# Staffing Model using "4R's"

- Requirements
  - 3-5 % growth/yr
- Retention
  - Retirements pending
- Recruitment
  - competitive
- Residency Programs





# **USA** Situation



JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 2, SPRING 2010

# Future trends in the supply and demand for radiation oncology physicists

Michael D. Mills,<sup>1a</sup> Judah Thornewill,<sup>2</sup> Robert J. Esterhay<sup>2</sup> Department of Radiation Oncology,<sup>1</sup> University of Louisville School of Medicine, Louisville, KY, USA; Department of Health Management and Systems Sciences,<sup>2</sup> University of Louisville School of Public Health and System Sciences, Louisville, KY, USA. Mdmill03@gwise.louisville.edu

Received 16 January, 2008; accepted 18 December, 2009

*"....the minimum number of new radiation oncology physicists required for the health of the profession is estimated to be 125 per year in 2020."* 

## What about World Demand? Cancer knows no borders

#### **Global Medical Physics Efforts: Closing the Gap**

Jacob (Jake) Van Dyk\* Western University

Purpose: There is an increasing awareness of the disparity in Medical Physics needs between high income countries (HICs) and low-to-middle income countries (LMICs). This is especially evident with the growing incidence of cancer in LMICs. Projections from the recent Lancet Oncology Commission on Expanding Global Access to Radiotherapy indicate that an additional 22,000 Medical Physicists will be required by 2035 to provide uniform access to radiation therapy globally. This paper addresses possibilities and challenges associated with closing the Medical Physics gap between HICs and LMICs.

Methods: Medical Physics and Oncology related organizations involved in providing support to enhance cancer therapy in LMICs were reviewed, especially as related to education, training and human resource development.

Results: More than 35 organizations involved in addressing the cancer crisis in LMICs were found. Of these, 16 involve Medical Physics activities, with 7 being specific Medical Physics-related organizations. Ten of the 16 are involved in some LMIC activities with 6 having a major emphasis on LMIC contexts.

Conclusions: The development of Medical Physics human resource capacity is a major challenge for LMICs. Fifty-five countries have no radiation therapy capabilities and by implication no capacity to train Medical Physicists. Overt attention with structured and altruistic actions by HIC contexts will help make inroads into the LMIC needs. Clear options throughout career structures in support of global health considerations combined with strong partnerships between interested parties in HICs and LMICs will enhance the development of safe and resource-appropriate strategies for advancing Medical Physics capabilities.

### + 22,000 Medical Physicists by 2035

Breast (73) Prostate (34)



http://www.thechatterboxx.com/wp-content/uploads/2015/02/elephant.jpeg

# What if ...

Seniors won't retire?

Cancer rates drop? (cancer prevention)

Major Breakthrough? (cancer cure)







Don Cherry (Adam d'Oliveira photography)

## Lung Cancer Prevention



Canadian Cancer Statistics 2015

NAME OF TAXABLE PARTY AND INCOME.

Australian Gold

DARK TANNING FORMUL

WITH COOLINE

AND LOUD 8.5 FL C 251 m

# THERE IS NE AH 4) **THESE ARE THE BULLETS.**

Revolutionary new pills like GLEEVEC combat cancer by targeting only the diseased cells. Is this the breakthrough we've been waiting for?

2001

## **Biology Targeting Strategy**



Dose of Targeting Agent

- Physical approaches have reached "saturation"
- Cannot image <u>all</u> cancer cells; doomed to failure
- Radiation alone is less effective
- Targeted drugs work (melanoma, leukemia)
- Tumour diversity requires bio-targeting
- Tissue regeneration for treatment toxicity







A new study finds that a year's supply of Gleevec (imatinib), a leukemia drug, costs about \$159 to make, but the yearly price tag is \$106,322 in the U.S. and \$31,867 in the U.K. (Wikimedia Commons)

### Cost per Genome





P≧

Using 23andMe's service, Kristen learned how better health starts with an awareness of her genetics.



## A look back in History Telegram from E.A McCulloch to H. E. Johns 1962

"Sell betatron. <u>Stop</u>. Sell Cobalt unit. <u>Stop</u>. The cure for cancer will come from polyoma virus research. <u>Stop</u>."



Stem Cells

To Eradicate, you must irradiate!

## **Opinion of Radiobiologist**

"Early detection (for which imaging should get kudos) and focused treatments (which radiotherapy can do much better than ever before) will increase cancer patient survival impressively."

## DJ Chapman 2016

Chapman, J. D. "Target theory revisited: Why physicists are essential for radiobiology research." *Clinical Oncology* 19.3 (2007): S12.

## Physical Targeting Strategy



- "Dose sculpting" is targeted/personalized
- A clinical track record in diagnosis/therapy
- Radiation therapy is <u>very</u> Cost-Effective
   \$184 B could save 27 M life-years (Atun et al. 2016)
  - \$ 6,800 /life-year saved
- Future roles in heavy ions, radiomics, BART

# **Costs in Perspective**

## PROCEDURE

## COST (\$/yr of life saved)

Mine Safety1,000,000Radiation Protection16,000Auto Safety (Air Bags)8,000Radiation Therapy (Global)<6,800</td>Traffic Barrier (Median)5,700Feed the Poor125



## A Personal View

Cancer is genomic disequilibrium of DNA damage/repair

Cells have a complex integrated system with dynamic feedback loops to maintain survival.

Combined Therapies is a "must" to cope with tumour obscurity, heterogeneity and adaptability

Tumour cells are "smart". We just need to be "smarter" !



#### Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: the Three Musketeers or just another quixotic combination?

Mitchell Kamrava, †<sup>*a*</sup> Michael B. Bernstein, †<sup>*b*</sup> Kevin Camphausen<sup>*a*</sup> and James W. Hodge<sup> $\pm b$ </sup>

Received 9th June 2009, Accepted 17th July 2009 First published as an Advance Article on the web 27th August 2009 DOI: 10.1039/b911313b



#### REVIEW

# Conclusions



Your timing is good Cancer and Heart Disease demands will crest

CAMPEP-PhD keeps many <u>career doors open</u> (clinical, industry, academic)

Global international demand is unmet and could save millions of lives

Medical Physics is a "safe" option for several decades Enhance your collaboration with biologists Expand your administrative skill set

## Other Tools you will eventually need

- Inter-Professional Communication
  - Diplomacy
  - Public Relations
  - Lay explanations
- Financial Management
  - Budgets
  - Procurement
- Human Resources
  - Staffing Algorithms
  - Conflict resolution
  - Labour law
- Intellectual Property
  - Research Contract
  - Intellectual Property



http://businessblog.winweb.com/cloud-computing/7-big-ideas-for-your-business-toolbox



It ain't the roads we take; it's what's inside of us that makes us turn out the way we do.

(O. Henry)

izquotes.com



## Life is very Stochastic.

### Getting Ready for a Clinical Physics Career: Is this the right choice for you?

#### Jerry Battista, PhD, FCCPM, FAAPM, FCOMP

Professor, Departments of Oncology and Medical Biophysics, Western University

Director, Physics Research & Education London Regional Cancer Program

London, Canada



### Colourful INTERACTIONS Colorées